Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação de normas.

Por meio delas podemos dar significado aos resultados. Portanto, durante o processo de teste com referência normativa, o resultado individual do testado adquire significado quando comparado aos resultados do grupo.

O que são normas?

Normas são os pilares que conferem significado aos resultados dos testes. Ao avaliar um indivíduo, seu desempenho é significativo apenas quando visto através do prisma das normas, que servem como parâmetros de comparação.

A Construção de uma Amostra Normativa

A amostra normativa, ou seja, o grupo cujo desempenho serve de comparação, é um conjunto representativo de indivíduos que reflete a população mais ampla e suas características. Através dessa amostra, obtemos uma distribuição de resultados que fundamenta a interpretação dos dados individuais

Ao administrar o teste para a amostra normativa, é possível obter a distribuição dos resultados. Esses dados contextualizam e dão significado aos resultados individuais – esses dados são as normas.

Percentis e Escores-Padrão: Ferramentas de Interpretação

Os resultados são frequentemente contextualizados em termos de percentis ou escores-padrão, como os escores T ou Z, que oferecem uma comparação quantitativa do desempenho de um indivíduo em relação à amostra normativa.

Quando os resultados são expressos em percentis, o resultado bruto (o resultado obtido após a correção do teste, seguindo as instruções do manual do teste) deve ser convertido em um resultado percentual.

O percentil indica a posição do desempenho no teste em relação ao desempenho da amostra de normatização e mostra quantos por cento da amostra normativa obteve resultados inferiores ao do indivíduo testado. Outra maneira de expressar as normas é usando escores-padrão.

Ao usar escores-padrão, os resultados brutos passam por uma transformação linear. Isso significa que os resultados brutos são convertidos em escalas que indicam a posição em relação a uma média “x” em termos de desvio-padrão.

O que significa o escore Z

O Escore Z também chamado de escore padrão, é uma medida estatística que expressa a posição de um ponto de dados em relação à média e ao desvio padrão de uma distribuição.

Em essência, são uma forma de expressar o posicionamento do resultado do indivíduo em relação aos resultados da amostra normativa, mas evitando o problema das diferentes unidades no escore percentual.

Como se calcula o escore Z

A fórmula para calcular o escore Z é a seguinte:

Z = (escore bruto – média da amostra normativa) / desvio-padrão da amostra normativa

Portanto, o escore-padrão do indivíduo é a posição que seu resultado bruto ocupa em relação a uma média “x”, medida em unidades de desvio-padrão. Para entender melhor, podemos fornecer um exemplo, mas primeiro é importante compreender o que é um escore Z.

Como interpretar o escore Z

Vamos utilizar um exemplo prático para entender melhor como o escore Z funciona na prática.

Suponha que esta avaliando o desempenho em um teste de QI (Quociente de Inteligência) de um individuo. O resultado obtido foi de 120 nesse teste. Se a média de QI na população é 100 e o desvio padrão é 15, podemos calcular o escore Z da seguinte maneira:

Z =(120−100)/15=1.33

Isso significa que o indivíduo obteve um escore Z de 1.33 em relação ao QI. Interpretando esse resultado, podemos dizer que o desempenho desse indivíduo está 1.33 desvios padrão acima da média da população em termos de QI.

A interpretação de um escore Z deve sempre ser considerada no contexto da característica avaliada. Por exemplo, um escore Z positivo em um teste de inteligência é algo bom, enquanto um escore Z positivo em um teste de ansiedade pode ser algo ruim, a depender do instrumento de medida.

Conclusão

A comparação de dados normativos em Psicometria é útil para avaliar o desempenho individual em uma variedade de características psicológicas. Os escores Z são uma ferramenta estatística valiosa que nos permite padronizar e interpretar essas comparações de maneira objetiva.

Ao entender os conceitos por trás dos escores Z, os profissionais podem tomar decisões mais informadas e ajudar as pessoas a alcançar seu potencial máximo.

Lembrando sempre de usar essa ferramenta com cuidado e considerar o contexto específico em que ela está sendo aplicada para obter interpretações corretas.

Esperamos que este post tenha ajudado você a entender melhor esses conceitos e como aplicá-los na prática.

Aproveite e inscreva-se no canal e aprimore suas habilidades em análise de dados!

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

Referência

Pacico, J. C. (2015) Normas. In Psicometria. Org: Claudio Simon Hutz, Denise Ruschel Bandeira, Clarissa Marceli Trentini. – Porto Alegre : Artmed.

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.