Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

O que é um teste paramétrico?

Você já deve ter passado por isso, na hora de escolher um teste, você fica em dúvidas se escolhe uma versão paramétrica ou não paramétrica. Muitas vezes alguém irá dizer que o paramétrico é melhor e mais confiável que o não paramétricos. Isso é verdade? Neste artigo, vamos tentar entender o que é um teste paramétrico e quando devemos usá-los.

Existem duas definições para testes ou estatísticas paramétricas:

  • São técnicas que tem como pressuposto que os dados sigam uma distribuição específica, como a distribuição normal.

  • São técnicas que seguem um modelo ou estrutura fixa, como um modelo linear.

Diversas técnicas precisam que os dados sigam distribuição específicas. Em geral, na psicometria, temos muitas técnicas voltadas para dados com distribuição normal, como os testes-t e as análises fatoriais.

Pela segunda definição, temos estatísticas que são calculadas através de parâmetros específicos e rígidos. Por exemplo, na regressão linear ou correlação de Pearson, os dados serão analisados de acordo com a equação de uma reta, que tem uma estrutura fixa: temos parâmetros para definir onde a reta intercepta o eixo y intercepto (β0) e para definir o ângulo da reta (β1X1). Você pode descobrir mais sobre a fórmula da regressão no nosso artigo sobre Regressão Linear.

São exemplos de testes paramétricos:

  • Teste-t

  • ANOVA

  • Correlação de Pearson

  • Regressão Linear

  • Regressão Logística

Quais as vantagens de um teste paramétrico?

Existem duas vantagens importantes para os testes paramétricos: eles são mais interpretáveis e são estatisticamente mais poderosos. Como eles tem um modelo bem definido, fica mais fácil de interpretar – nós entendemos bem como uma linha ou uma distribuição normal funciona. E, como eles tem distribuições definidas, eles são mais poderosos, exigindo menos casos para detectar um efeito.

Apesar disso, você deve evitar os testes paramétricos quando houver quebra de pressupostos, já que isso deixará sua análise menos rigorosa e menos confiável. É importante observar em cada teste quais os pressupostos e o que acontece quando os quebramos para tomar a decisão de evitá-los.

Agora você vai saber identificar um teste paramétrico. Você também sabe que se seus dados não seguirem todos os pré-requisitos de um teste paramétrico, você pode procurar uma alternativa não paramétrica. Nós falamos mais sobre isso, aqui!

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Teste de Wilcoxon

Teste de Wilcoxon

O teste de Wilcoxon é um teste de hipóteses para analisar a diferença entre duas amostras pareadas. Portanto, podemos usá-lo quando temos duas medidas de uma mesma amostra, isto é,

O que é um teste post hoc?

O que é um teste post hoc?

Alguma vez, durante a sua jornada como pesquisador, já deve ter se perguntado o que é um teste post hoc ou o que significa fazer um teste post hoc. Testes

O que é a distância de Cook?

O que é a distância de Cook?

A distância de cook é uma estatística para avaliar o quanto um único caso é capaz de influenciar a estimativa de um modelo de regressão.

Entenda o que são graus de liberdade

Entenda o que são graus de liberdade

Os graus de liberdade são uma medida que nos ajuda a determinar o número de observações independentes que temos em nossos dados. Em outras palavras, eles indicam quantos valores podemos

O que são parâmetros livres e fixos em uma AFC?

O que são parâmetros livres e fixos em uma AFC?

Parâmetros livres e fixos são uma parte fundamental para o entendimento da Análise Fatorial Confirmatória (AFC). É útil entender estes conceitos, para quando falarmos de índices de modificação e identificação

Teste de Wilcoxon

Teste de Wilcoxon

O teste de Wilcoxon é um teste de hipóteses para analisar a diferença entre duas amostras pareadas. Portanto, podemos usá-lo quando temos duas medidas de uma mesma amostra, isto é,

O que é um teste post hoc?

O que é um teste post hoc?

Alguma vez, durante a sua jornada como pesquisador, já deve ter se perguntado o que é um teste post hoc ou o que significa fazer um teste post hoc. Testes

O que é a distância de Cook?

O que é a distância de Cook?

A distância de cook é uma estatística para avaliar o quanto um único caso é capaz de influenciar a estimativa de um modelo de regressão.

Entenda o que são graus de liberdade

Entenda o que são graus de liberdade

Os graus de liberdade são uma medida que nos ajuda a determinar o número de observações independentes que temos em nossos dados. Em outras palavras, eles indicam quantos valores podemos

O que são parâmetros livres e fixos em uma AFC?

O que são parâmetros livres e fixos em uma AFC?

Parâmetros livres e fixos são uma parte fundamental para o entendimento da Análise Fatorial Confirmatória (AFC). É útil entender estes conceitos, para quando falarmos de índices de modificação e identificação

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.