Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

O que é o teste de Shapiro-Wilk?

O Teste de Shapiro-Wilk tem como objetivo avaliar se uma distribuição é semelhante a uma distribuição normal. A distribuição normal também pode ser chamada de gaussiana e sua forma assemelha-se a de um sino. Esse tipo de distribuição é muito importante, por ser frequentemente usada para modelar fenômenos naturais.

Na prática, podemos querer saber, por exemplo, se a idade dos participantes da nossa amostra segue ou não uma distribuição normal. Para isso, podemos usar o teste de Shapiro-Wilk.

Como resultado, o teste retornará a estatística W, que terá um valor de significância associada, o valor-p. Para dizer que uma distribuição é normal, o valor p precisa ser maior do que 0,05.

Para um exemplo prático, a seguir temos um histograma. Podemos ver que a distribuição da idade é, aparentemente, normal:

E, de fato, o teste de Shapiro-Wilk mostra evidências que esta amostra não é diferente de uma distribuição normal. Como resultados temos que W = 0,998 e p = 0,518. Ou seja, p > 0,05.

Já no seguinte gráfico, o qual demonstra uma distribuição assimétrica, enviesada para a direita,  é esperado que o teste de Shapiro-Wilk identifique esta amostra como diferente de uma curva normal.

Como o esperado, o teste apresenta W = 0,926 e p < 0,0001. Ou seja, é uma distribuição diferente da normal.

Quando devo usar o teste de Shapiro-Wilk?

Apesar deste teste ser fácil e objetivo, ele tem suas limitações. O Shapiro-Wilk não é capaz de detectar normalidade em amostras pequenas.  Já em amostras grandes, ele costuma apresentar significância para pequenos desvios da normalidade (Miot, 2017).

Por isso, o teste deve ser usado com cautela. Em breve, apresentaremos no blog outras formas de análise da normalidade. Vamos aprender cada uma destas análises:

  • Gráficos;
  • Curtose;
  • Assimetria;
  • Teste de Kolgomorov-Smirnov.

 

Se você gostou dessa postagem ou se tem alguma dúvida, deixe seu comentário! Vai ser ótimo te ajudar! Não se esqueça também de se cadastrar na nossa lista para receber todas as atualizações.

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

Referência

Miot, H. A. (2017).  Avaliação da normalidade dos dados em estudos clínicos e experimentais. Jornal Vascular Brasileiro [online]. 16(2), pp. 88-91. doi.org/10.1590/1677-5449.041117.

 

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Teste de Wilcoxon

Teste de Wilcoxon

O teste de Wilcoxon é um teste de hipóteses para analisar a diferença entre duas amostras pareadas. Portanto, podemos usá-lo quando temos duas medidas de uma mesma amostra, isto é,

O que é um teste post hoc?

O que é um teste post hoc?

Alguma vez, durante a sua jornada como pesquisador, já deve ter se perguntado o que é um teste post hoc ou o que significa fazer um teste post hoc. Testes

O que é a distância de Cook?

O que é a distância de Cook?

A distância de cook é uma estatística para avaliar o quanto um único caso é capaz de influenciar a estimativa de um modelo de regressão.

Entenda o que são graus de liberdade

Entenda o que são graus de liberdade

Os graus de liberdade são uma medida que nos ajuda a determinar o número de observações independentes que temos em nossos dados. Em outras palavras, eles indicam quantos valores podemos

O que são parâmetros livres e fixos em uma AFC?

O que são parâmetros livres e fixos em uma AFC?

Parâmetros livres e fixos são uma parte fundamental para o entendimento da Análise Fatorial Confirmatória (AFC). É útil entender estes conceitos, para quando falarmos de índices de modificação e identificação

Teste de Wilcoxon

Teste de Wilcoxon

O teste de Wilcoxon é um teste de hipóteses para analisar a diferença entre duas amostras pareadas. Portanto, podemos usá-lo quando temos duas medidas de uma mesma amostra, isto é,

O que é um teste post hoc?

O que é um teste post hoc?

Alguma vez, durante a sua jornada como pesquisador, já deve ter se perguntado o que é um teste post hoc ou o que significa fazer um teste post hoc. Testes

O que é a distância de Cook?

O que é a distância de Cook?

A distância de cook é uma estatística para avaliar o quanto um único caso é capaz de influenciar a estimativa de um modelo de regressão.

Entenda o que são graus de liberdade

Entenda o que são graus de liberdade

Os graus de liberdade são uma medida que nos ajuda a determinar o número de observações independentes que temos em nossos dados. Em outras palavras, eles indicam quantos valores podemos

O que são parâmetros livres e fixos em uma AFC?

O que são parâmetros livres e fixos em uma AFC?

Parâmetros livres e fixos são uma parte fundamental para o entendimento da Análise Fatorial Confirmatória (AFC). É útil entender estes conceitos, para quando falarmos de índices de modificação e identificação

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.