Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

Coeficiente de Concordância de Kendall

O coeficiente de concordância de Kendall (KCC) é um teste não paramétrico que indica o grau de associação entre avaliadores/juízes/especialistas. Seu uso é recomendado quando as classificações forem ORDINAIS, uma vez que este coeficiente, diferentemente da estatística Kappa, responde pela ordem de pontuação.

Como calcular o coeficiente de concordância de Kendall no SPSS?

Para implementar o KCC, clique em Analyze –> Non-parametric tests –> Legacy Dialogs –> K related Samples. APós isso, marque a opção Kendall´s W.

Agora, insira na coluna da direita todos os itens/ amostras/sujeitos que foram avaliados pelos juízes/especialistas/avaliadores.

Nos resultados, procura na tabela Estatísticas do Teste o W de Kendall e a significância.

Como interpretar os valores do KCC?

Do mesmo jeito que com o Kappa de Cohem e o Kappa de Fleiss (também usados para testar concordância), os valores do coeficiente de Kendall podem variar de 0 a 1. Quanto mais alto o valor do coeficiente de Kendall, mais forte é a concordância. Os coeficientes de Kendall de 0,9 são considerados muito bons. Um coeficiente de Kendall alto e significativo indica que os avaliadores/juízes/especialistas aplicam essencialmente o mesmo padrão ao avaliar amostras.

Quando usar o Kappa de Cohem, Kappa de Fleiss ou o KCC?

  • Primeiro, se as avaliações são NOMINAIS (por exemplo: verdadeiro / falso, pertinente / não pertinente) e o número de juízes/especialista é DOIS, use a estatística Kappa de Cohem.
  • Por outro lado, quando as avaliações são NOMINAIS e o número de juízes/especialista é MAIOR QUE DOIS, use a estatística Kappa de Fleiss.
  • Finalmente, quando as classificações são ORDINAIS (por exemplo: pontuações feitas em uma escala) e o número de juízes/especialista é MAIOR QUE DOIS, use o Coeficiente de Concordância de Kendall.

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Análise de mediação e moderação: definições e diferenças

Análise de mediação e moderação: definições e diferenças

Nesse post, discutimos as caracteríticas e diferenças entre modelos de mediação e moderação.

Análise Fatorial Exploratória ou Análise Fatorial Confirmatória: Qual escolher?

Análise Fatorial Exploratória ou Análise Fatorial Confirmatória: Qual escolher?

Nesse post, discutimos quando utilizar uma análise fatorial exploratória e uma análise fatorial confirmatória.

Análise Fatorial e Análise de Componentes Principais: Diferenças e Quando usar

Análise Fatorial e Análise de Componentes Principais: Diferenças e Quando usar

Nesse post, discutimos as diferenças entre análise fatorial e análise de componentes principais, e quando usar cada uma dessas técnicas.

O que é Psicometria?

O que é Psicometria?

A Psicometria pode ser definida como a ciência da mensuração de características, atributos e habilidades psicológicas (Buchanan & Finch, 2005), sendo uma importante área de estudos na Psicologia e, também, na educação.

O que é regressão linear simples?

O que é regressão linear simples?

Entenda o que é regressão linear simples.

Análise de mediação e moderação: definições e diferenças

Análise de mediação e moderação: definições e diferenças

Nesse post, discutimos as caracteríticas e diferenças entre modelos de mediação e moderação.

Análise Fatorial Exploratória ou Análise Fatorial Confirmatória: Qual escolher?

Análise Fatorial Exploratória ou Análise Fatorial Confirmatória: Qual escolher?

Nesse post, discutimos quando utilizar uma análise fatorial exploratória e uma análise fatorial confirmatória.

Análise Fatorial e Análise de Componentes Principais: Diferenças e Quando usar

Análise Fatorial e Análise de Componentes Principais: Diferenças e Quando usar

Nesse post, discutimos as diferenças entre análise fatorial e análise de componentes principais, e quando usar cada uma dessas técnicas.

O que é Psicometria?

O que é Psicometria?

A Psicometria pode ser definida como a ciência da mensuração de características, atributos e habilidades psicológicas (Buchanan & Finch, 2005), sendo uma importante área de estudos na Psicologia e, também, na educação.

O que é regressão linear simples?

O que é regressão linear simples?

Entenda o que é regressão linear simples.

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.