Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

Big Data e Psicologia

Quando você estiver lendo este post, a quantidade de dados possuída por cientistas, políticos, colunistas esportivos, profissionais de saúde, empresários e quase todos que lidam com dados já será astronômico, e ainda estará crescendo e crescendo e crescendo.

Quão grande? Bem, hoje em dia, a informação é medida em termos de exabytes ou cerca de .152.921.504.606.846.976 bytes (com cada byte representando 1 ou 0) ou cerca de 1 quintilhão de bytes. E existem cerca de 1.000 exabytes de informações disponíveis agora (e essa quantidade está crescendo rapidamente). Isso é muita coisa.

Mas, isso é Big Data?

Basicamente, Big Data é uma coleção muito grande de casos ou variáveis, mas geralmente ambos. Conceitualmente, big data representa um conjunto de dados que é muito grande para apenas “olhar” e ter uma noção de quais tendências podem estar presentes, quais discrepâncias podem estar no conjunto ou quais padrões importantes podem ser menos óbvios, mas estão lá.

Mas esses dados devem ser explorados e analisados. Prospecção de dados ou mineração de dados é o processo de explorar dados à procura de padrões consistentes, como regras de associação ou sequências temporais, para detectar relacionamentos sistemáticos entre variáveis, detectando assim novos subconjuntos de dados.

Por sua vez, os resultados da análise dessas informações podem ser usados ​​para prever, entender e influenciar os hábitos de compra do consumidor. Você já se perguntou como a Amazon sabe o que você comprou recentemente e sugere produtos alternativos? Analytics, é assim – apenas mais um termo para mineração de dados.

Onde que a Psicologia entra?

É provável que, nos próximos anos, a análise de big data produzirá descobertas notáveis ​​em muitas áreas, mas principalmente na área da saúde mental. Por meio de Big Data, é possível detectar padrões de comportamento depressivo, tendências suicidas. Além de avaliar fatores de risco e proteção, os quais influenciam o prognóstico ou a eficácia ou o progresso alcançado durante intervenções medicamentosas ou comportamentais. Passando pela Psicologia Forense ao analisar os dados sobre um assunto ou crime, padrões de comportamento , perfis criminais, etc.

Todos esses dados são inestimáveis, mas há tanta informação que é muito difícil entendê-la. O que é necessário é um conjunto de ferramentas que possam procurar padrões, e é aí que entra a mineração de dados (e SPSS).

E há toneladas de empregos para aqueles que têm as habilidades quantitativas para se aprofundar nele. Mas esteja ciente: Big data não substitui bons dados, e temos a tendência de pensar que quanto maior, melhor. Portanto, embora o Big Data certamente apareça de uma forma ou de outra, as mesmas perguntas precisam ser feitas sobre todos os conjuntos de dados, incluindo de onde os dados vieram, se eles podem ajudar a responder à pergunta feita, se eles são válidos e confiáveis, quem os coletou e com que intenção ou propósito, e assim por diante.

Espero que esse post tenha sido útil!

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.