Receba gratuitamente todos os nossos conteúdos.

Fique por dentro das novidades e oportunidades referentes à Psicometria e Análise Quantitativa de Dados.

Assimetria e Curtose: um guia completo

As análises estatísticas frequentemente requerem uma profunda compreensão da distribuição de dados. Dois conceitos fundamentais a serem compreendidos são assimetria e curtose.

Estas medidas ajudam a descrever a forma de uma distribuição de dados, revelando insights sobre a sua natureza. Neste guia, vamos falar sobre ambos os conceitos, oferecendo definições e exemplos para garantir uma compreensão completa.

O que é Assimetria?

Definição: Assimetria é uma medida de simetria, ou mais precisamente, da falta de simetria. Uma distribuição, ou conjunto de dados, é simétrica se parecer igual à esquerda e à direita do ponto central. Essencialmente, avalia a extensão e direção da inclinação da distribuição.

Exemplos:

Assimetria Positiva: Uma distribuição onde a maioria das rendas está na faixa baixa-média, mas alguns altos salários elevam a média.

Assimetria Negativa: Uma avaliação acadêmica onde a maioria dos alunos obtém notas quase perfeitas, mas algumas notas significativamente baixas reduzem a média.

Portanto, a assimetria diz respeito à inclinação direcional, indicando onde está a maioria dos valores em relação à média. É uma questão de esquerda versus direita como pode ser visto a seguir na Figura 1.

Se a cauda esquerda for mais longa que a cauda direita, a função é assimétrica negativamente. Se for o contrário, é assimétrica positivamente.

O que é Curtose?

Definição: A Curtose avalia a “caudalidade” da distribuição dos dados. Determina como as caudas de uma distribuição se comparam às caudas de uma curva de sino padrão.

Exemplos:

Alta Curtose: Em uma distribuição de alturas em uma população, se a maioria dos indivíduos tem altura média, mas há um número significativo de indivíduos extremamente altos e baixos, a distribuição apresenta alta curtose.

Baixa Curtose: Uma distribuição onde as alturas variam de forma mais uniforme, com menos valores extremos.

Podemos então dizer que a curtose mergulha no extremo. Tem menos a ver com direção e mais com a intensidade dos picos e vales nas caudas dos dados.

A curtose é usada para ajudar a medir como os dados se dispersam entre o centro e as caudas de uma distribuição, com valores maiores indicando que uma distribuição de dados pode ter caudas “pesadas” que estão densamente concentradas com observações ou que são longas com observações extremas.

A curtose pode ser categorizada em três medidas, conforme mostrado na Figura 2. Se a estatística de curtose de uma distribuição for semelhante à da distribuição normal, ou curva em sino, então ela é chamada de distribuição mesocúrtica. Este tipo de distribuição tem características de valores extremos semelhantes às de uma distribuição normal.

Se a curtose for maior que uma distribuição mesocúrtica, ela será chamada de distribuição leptocúrtica. Esta distribuição possui caudas longas (devido à presença de muitos outliers). O modelo final de distribuição é platicúrtico e tem uma curtose inferior à de uma distribuição mesocúrtica. Essa distribuição tem caudas mais curtas devido à menor quantidade de outliers.

Testando a normalidade, incluindo assimetria e curtose

Hair et al. (2010) argumentaram que os valores de assimetria entre -2 e +2 são considerados aceitáveis para comprovar distribuição normal e a curtose estiver entre ‐7 a +7.

Além disso, seguindo um argumento de Kline (2011) de que o valor absoluto de assimetria maior que 3 e o valor de curtose maior que dez podem indicar um problema e valores acima de 20 podem indicar um problema mais sério.

Assim, é sugerido que o valor absoluto de assimetria e curtose não deveriam ser superior a 3 e 10.

Esperamos que este post tenha ajudado você a entender melhor esses conceitos e como aplicá-los na prática.

Aproveite e inscreva-se no canal e aprimore suas habilidades em análise de dados!

Gostou desse conteúdo? Precisa aprender Análise de dados? Faça parte da Psicometria Online Academy: a maior formação de pesquisadores quantitativos da América Latina. Conheça toda nossa estrutura aqui e nunca mais passe trabalho sozinho(a).

Referências

Hair, J., Black, W. C., Babin, B. J. & Anderson, R. E. (2010) Multivariate data analysis (7th ed.). Upper Saddle River, New Jersey: Pearson Educational International.

Kline, R.B. (2011). Principles and practice of structural equation modeling (5th ed., pp. 3-427). New York:The Guilford Press.

BRUNO FIGUEIREDO DAMÁSIO

Sou Psicólogo, mestre e doutor em Psicologia. Venho me dedicando à Psicometria desde 2007.

Fui professor e chefe do Departamento de Psicometria da UFRJ durante os anos de 2013 a 2020. Fui editor-chefe da revista Trends in Psychology, da Sociedade Brasileira de Psicologia (SBP) eEditor-Associado da Spanish Journal of Psychology, na sub-seção Psicometri e Métodos Quantitativos.

Tenho mais de 50 artigos publicados e mais de 3000 citações, nas melhores revistas nacionais e internacionais. Atualmente, me dedico a formação de novos pesquisadores, através da Psicometria Online Academy. Minha missão é ampliar a formação em Psicometria no Brasil e lhe auxiliar a conquistar os seus objetivos profissionais.

Deseja se tornar completamente autônomo e independente na análise dos seus dados?

Deixe um comentário

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Veja mais

Posts relacionados

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Um Guia Completo sobre a PEDro: Physiotherapy Evidence Database

Se você é um profissional ou um estudante da área da saúde e está interessado nas práticas baseadas em evidências, este post é para você. Vamos descobrir como a base

Diferença entre as regressões logísticas: binária, ordinal e multinomial

Diferença entre as regressões logísticas: binária, ordinal e multinomial

A análise de regressão é uma técnica amplamente utilizada para verificar a existência de uma relação entre uma variável dependente e uma ou mais variáveis independentes. Existem diferentes tipos de

Construção de itens para instrumentos de autorrelato

Construção de itens para instrumentos de autorrelato

A elaboração de itens para instrumentos de autorrelato desempenha um papel crucial na pesquisa psicométrica, pois é por meio deles que os participantes expressam suas próprias experiências e percepções. Neste

Dados Normativos: Entendendo o Escore Z

Dados Normativos: Entendendo o Escore Z

Interpretar os resultados derivados do uso de um teste é tão crucial quanto criar ou adaptar os instrumentos e aplicá-los corretamente. Para a interpretação dos resultados, é essencial a criação

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

Compreendendo a Confiabilidade Duas-Metades (Split-Half Reliabity)

No campo da Psicometria, pesquisadores e profissionais frequentemente buscam garantir a precisão e consistência de seus instrumentos de medição. Um dos métodos usados para avaliar a confiabilidade de um teste

Cadastre-se para ser notificado com o link das aulas ao vivo:

Módulo 4: Redes neurais artificiais

• Introdução a Deep Learning

• Avaliando sistemas de Deep Learning

• Redes Neurais feitas (sem programação) no SPSS

• Aula bônus: O futuro da IA na Sociedade

• Aula bônus: Dois Estudos de Caso 

Módulo 3: Interpretar e reportar resultados

• Gerar, interpretar e reportar resultados em Machine Learning

Módulo 2: Criando o seu sistema

• Selecionando algoritmos e métodos 
• Práticas de Machine Learning (Sem programação): Decision Tree (JASP), Linear Discriminant Classification (JASP) e Plataforma ORANGE
• Aula Bônus: Avaliação Psicológica e Machine Learning
• Aula Bônus: Livros e Cursos recomendados  
• Aula Bônus: Entrevista com Cientista de Dados focado na área da Saúde

Módulo 1: O que é Machine Learning

• O que é Machine Learning?
• Como a máquina aprende?
• Machine Learning para Psicometria e Pesquisa Quantitativa (pesquisas comentadas)
• Tipos de Machine Learning (Supervisionado e Não-supervisionado)
• Práticas de Machine Learning (Sem programação): JASP e SPSS
Aula Bônus: Filosofia da Inteligência Artificial
• Aula Bônus: Entrevista com Cientista de Dados graduado em Psicologia
• Aula bônus: Estudo de Caso sobre Redução Dimensional 

Preencha abaixo para
participar gratuitamente

Fique tranquilo, não utilizaremos suas informações de contato para enviar qualquer tipo de SPAM. Os dados coletados são tratados nos termos da Lei Geral de Proteção de Dados e você pode se descadastrar da nossa lista de contatos a qualquer momento.